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The MDP Model !"#$%&'%()*+%
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Reward: rt = r(xt, at)
Goal: maximize cumulative reward

E

[
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t=1

r(xt, at)
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The MDP Model with Adversarial Reward Functions
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Reward: rt(x, a) = r(x, a, yt)
Goal: minimize regret

RT = max
π

E

[
T∑
t=1

rt(x
π
t , a

π
t )

]
− E

[
T∑
t=1

rt(xt, at)

]
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The MDP Model

The world is too large
Part of the state is controlled, with a well understood dynamics
Part of the state is uncontrolled, complicated dynamics,
unobserved state variables
In many applications only the reward is influenced by the
uncontrolled component

Ex: paging in computers, the k-server problem, stochastic routing,
inventory problems, . . .
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Formal Definition

Finite state space X

Finite action set at state x: A(x)

Policy π: π(x) distribution over A(x) for all x ∈ X.
Transition kernel: P(·|x, a) distribution of the next state

Reward functions rt(x, a) are selected in advance
Goal: minimize regret

RT = max
π

E

[
T∑
t=1

rt(x
π
t , a

π
t )

]
− E

[
T∑
t=1

rt(xt, at)

]

Set of reference policies
Can accomodate several constraints (e.g., computational or memory
complexity)
May be selected to include the optimal policy – if some assumptions are
made
Deterministic policies: π(x) deterministically selects an action

Generalizes . . .
traditional MDP framework
online learning with finite-state adversaries
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The Expert Setting: The Classics

Previous setup with a single state: at each time step select action
at and obtain reward rt(at).
Bounded rewards: rt(a) ∈ [0, 1]
Several algorithms to achieve small regret against constant
actions
Standard algorithm: exponentially weighted average (EWA)

πt(a) ∼ exp

(
η

t−1∑
s=1

rs(a)

)

Achieves regret O(
√
T ln |A|)

Bandit feedback: agent observes rt(at) only – use estimated
rewards r̂t(a) in place of rt(a), e.g.,

r̂t(a) =
I{at=a}
πt(a)

rt(a)

Price of bandit information: O(
√
T |A|) regret
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Can it be Done? Some Previous Results

paper algorithm feedback loops regret bound
Even-Dar et al. (2005) MDP-E full info yes Õ(T1/2)

Yu et al. (2009) LAZY-FPL full info yes Õ(T3/4+ε), ε > 0

Yu et al. (2009) Q-FPL bandit yes o(T)

Neu et al. (2010) SSP-B bandit no O(T1/2)

Neu et al. (2011, 2013) MDP-B bandit yes Õ(T1/2)

Dick et al (2013) online optimization both both Õ(T1/2)
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Loop-free Shortest Path
Problems
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Loop-free Shortest Path Problem

X0 X1 X2 X3 X4

a1 a2

X0 X1 X2 X3 X4

l=0 l=1 l=2 l=3 l=4 l=0 l=1 l=2 l=3 l=4
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An Inefficient Solution

stationary (deterministic) policies = experts

number of experts N = |A||X|

Regret of EWA in the full information case, rt ∈ [0, 1]:

RT ≤ L
√
T lnN
2

= L

√
T |X| ln |A|

2
,

where L is the length of the longest path.
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Towards Efficient Algorithms

Action-value function

qπt (x, a) = E

[
L−1∑
k=lx

rt(xk, ak)

∣∣∣∣∣ xl = x, al = a
]

QπT (x, a) =

T∑
t=1

qπt (x, a) QT (x, a) =

T∑
t=1

qπt(x, a)

Value function:
vπt (x) = q

π
t (x, π(x))

VπT (x) =

T∑
t=1

vπt (x) VT (x) =

T∑
t=1

vπtt (x).

Occupation measure:

µπ(x) = E

[
L∑
l=0

I{xl=x}

∣∣∣∣∣π
]
= P (xlx = x|π) , x ∈ X
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Performance Difference Lemma

Optimal policy π∗ = arg maxπV
π(x0) = arg maxπQ

π
T (x0, π(x0))

Performance difference lemma (Cao, Kakade et al, Neu et al, and
others):

RT = Vπ
∗
T (x0) − VT (x0) =

L−1∑
l=0

∑
x∈Xl

µπ∗(x) (Qt(x, π
∗(x)) − Vt(x))

≤
L−1∑
l=0

∑
x∈Xl

µπ∗(x)
(

max
a
Qt(x, a) − Vt(x)

)

=

L−1∑
l=0

∑
x∈Xl

µπ∗(x)max
a

T∑
t=1

(
qt(x, a) − qt(x, πt(x))

)
.︸ ︷︷ ︸

regret of πt at state x with rewards qt(x, ·)

Suggests: use an instance of an expert algorithm in each state.
Algorithm: take expert/bandit algorithm and use it in state x with
rewards qt(x,·)

L−lx
.
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Regret Bounds with EWA (NeGySz10,13)

Full information case:

RT ≤
L(L+ 1)

2

√
T ln |A|

2
.

Bandit feedback – works with estimated rewards:

RT = O

(
L2

√
T |A| ln |A|

α

)
,

where
α = inf

π,x
µπ(x) > 0.
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Online Linear Optimization
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Online Linear Optimization

Given K ⊂ Rd, convex

t = 1, 2, . . .:

Learner chooses xt ∈ K
Environment picks `t ∈ Rd

Learner observes `t and receives cost 〈`t, xt〉

Goal: Minimize
∑T
t=1 〈`t, xt〉

Regret:
∑T
t=1 〈`t, xt〉− minx∈K

∑T
t=1 〈`t, x〉
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Online Mirror Descent

Online Mirror Descent (after Nemirovski and Yudin, 1983; Beck
and Teboulle, 2003):

xt+1 = arg minx∈K {η 〈`t, x〉+DR(x, xt)}

η > 0 – learning rate
R : A→ R – Legendre function
DR(x, x

′) = R(x) − R(x ′) − 〈∇R(x ′), x− x ′〉 – Bregman divergence
Example:

A = [0,∞)d, R(w) =
∑
iwi ln(wi) −wi

DR(w,w
′) =

∑
iwi ln(wi/w ′i) −wi +w

′
i: “unnormalized KL

divergence between w and w ′”

Regret of mirror descent: O(
√
T) with good constants
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Online Mirror Descent: Implementation (DiGySz13)

How to implement it?

Implementation in two steps:

x̃t+1 = arg minx∈Dom(R) {η 〈`t, x〉+DR(x, xt)} ,
xt+1 = arg min

x∈K
DR(x, x̃t+1) .

First step is unconstrained optimization (R being Legendre),
usually easy.
How to implement the second step?
Use another Mirror Descent!

⇒ MD2
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Online Mirror Descent: MD2 algorithm (DiGySz13)

Issues:
Only approximate solution to arg minx∈KDR(x, x̃t+1).
Complexity of projection depends on the maximum steepness of
DR(·, x̃t+1).

For the unnormalized negentropy regularizer,
redefine K to satisfy K ⊂ {x ∈ [0, 1]d : xi ≥ β, 1 ≤ i ≤ d};
to compute the projection use MD with c-approximate projections:
chose xt+1 such that ‖xt+1 − x∗t+1‖ ≤ c with
x∗t+1 = arg minx∈KDR(x, x̃t+1);
the projection is computed with MD with squared regularizer;

Performance
Regret:

T∑
t=1

〈`t, xt〉−
T∑
t=1

〈`t, x∗〉 ≤
T∑
t=1

〈`t, xt − x̃t〉+
DR(x

∗, x1)

η
+
√
T

with c = βη

2
√
T

, and 〈`t, xt − x̃t〉 ≤ η‖`t‖2∞.

Per-step complexity: O
(
H√
β

ln 2
√
Td
βη

)
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Application to Online SSPs (DiGySz13)

µπ(x, a) = “prob of visiting (x, a) in step l = lx under π when
started from the start state.

∀l, µπ(·, ·) is a distribution over Ul = {(x, a) : lx = l}

; “occupation
measure”

Expected return of π under reward rt: 〈rt, µπ〉
The set of occupation measures K = {µπ : π stat. policy} ⊂ RU is
closed and convex
Policy π from occupation measure µ: π(a|x) = µ(x,a)∑

a ′ µ(x,a
′) .

Online SSP problem with {rt} ≡ online linear optimization with
payoff sequence {rt} over the convex set K
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MD2 Applied to Online SSPs

Mirror descent with R(µ) =
∑
l Rl(µl), Rl : [0,∞)|Ul| → R

unnormalized negentropy:

µ̃t+1 = arg minµ∈(0,∞)|U| {−η 〈rt, µ〉+DR(µ, µt)} ,
µt+1 = arg minµ∈KDR(µ, µ̃t+1).

Approximate projections to

Kδβ = {µ ∈ K : min
x,a

µ(x, a) ≥ δβ},

β = min
x,a

µexp(x, a) > 0,

where µexp
.
= µπexp with some πexp “exploration policy”

From regret bound, use δ = 1/
√
T
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Online Linear Optimization: Results (DiGySz13)

Regret:

O

(
L
√
T max

l
ln |Ul|)

)
.

Complexity:
O
(
T 1/4d4 ln(Td)/β1/2

)
where β = min(x,a) µexp(x, a), d = |U|

Compare with baseline
Regret: O(L

√
T |X| ln |A|)

Complexity: O(|A||X|)

Compare with (NeGySzA13):
Regret: O(L2

√
T ln |A|)

Complexity: O(|d|)
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Bandit Online SSPs

Reward estimate:

r̂t(x, a) =
I{x(l)t = x, a

(l)
t = a}

µπt(x, a)
rt(x, a) .

Unbiased estimate of rt as long as minx,a µπt(x, a) > 0
Since µπt ∈ Kβδ, minx,a µπt(x, a) > 0 will hold.

Regret bound: O
(
dL
√
T maxl ln |Ul|

)
.

Complexity: O
(
T 1/4d4 ln(Td)/β1/2

)
.

Compare with . . .

Baseline regret: O(
√
T |A||X|).

Compare with Neu et al. (2010, 2013): they either assumed that
every policy visits every state with positive probability, or got weaker
dependence on T
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MDPs with Loops
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Recurrent MDPs

Assumptions:

Every policy admits a unique stationary distribution (bounded away
from zero).
Uniform mixing:

sup
π

‖(µ− µ ′)Pπ‖1 ≤ e−τ‖µ− µ ′‖1

with some τ > 0, for any distributions µ, µ ′ over U.

Define K = {µπ : π stationary policy} ⊂ Rd, d = |U|.
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Regret Decomposition

Regret decomposition (NeGySz11):

Eπ1:T

[
T∑
t=1

rt(Xt, At)

]
− min

π∈Π
Eπ

[
T∑
t=1

rt(Xt, At)

]
≤

E

[
T∑
t=1

〈rt, µπt − µπ〉
]
+ (τ+ 1)Tk+ 4τ+ 4,

where k = max1≤t≤T E [‖µπt − µπt+1‖1].

Corollary: Online MDP optimization u Online linear optimization,
but the policies must change slowly
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Online Linear Optimization: Results

Use mirror descent with approximate projections (to Kβδ) and
estimated rewards.

Slow changes? Yes!

(Pinsker, prox-lemma)

Regret: O(
√
τT ln(d)), d = |U|.

Complexity: O
(
T 1/4d4 ln(Td)/β1/2

)
.

Compare with Neu et al. (2011):

Regret: O(τ3/2
√
T ln |A|).

Complexity: ≈ O(d3) (policy evaluation).
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Bandit Online MDP Optimization

Use mirror descent with approximate projections (to Kβδ) and
estimated rewards.

Slow changes? Yes!

(Pinsker, prox-lemma)

Reward estimation: introduce a delay of N time steps (i.e., data at
time t determines policy at time πt+N).
Estimate the rewards with:

r̂t(x, a) =
I{xt = x, at = a}

µ
(N)
t (x, a|xt−N+1)

rt(x, a),

where µ(N)
t (x, a|xt−N+1) = P (xt = x, at = a|xt−N+1).

If N ≥ D+ 1, D being the MDP’s “diameter”, µ(N)
t (x, a|xt−N+1) > 0.
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t (x, a|xt−N+1) = P (xt = x, at = a|xt−N+1).

If N ≥ D+ 1, D being the MDP’s “diameter”, µ(N)
t (x, a|xt−N+1) > 0.
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Results (DiGySz13)

Regret:
O
(√

T (D+ τ+ 1+ d) lnd+D+ τ
)
,

where d = |U| and D is the diameter of the MDP

Complexity:

O
(
T 1/4d4 ln(Td)/β

)
+O

(
|X|2(D+ 1+ |X|+ |A|)

)
,

where β = min(x,a) µ
uniform(x, a)

Compare with (NeGySzA13):

Regret: O(τ3/2
√
T |A| ln(|A|) ln(T)/µmin) +O(τ ln T).

Complexity: |X|2(N+ |X|+ |A|), N = τ ln T .
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Conclusions

MDPs with adversarial rewards are a promising extensions of
MDPs

Efficient algorithms exist

In fact, DiGySze13 define another class of such algorithms based
on MCMC (“Dikin walk” of Narayanan and Rakhlin, 2011)
“Continuous exponential weights algorithm” (no projections)
Complementary results: Larger complexity (as a function of d),
incomparable constants in the regret

Models are often limited:

finite (small) state and action spaces
uniform mixing

Extensions?
Lower bounds?
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